
AI-Chart-2.3.doc 2009/06 – GameTechMods-Robot Arena

Content
Introduction

AI chart
Building your bot

Binding
Constructor parameter

Adding a binding
Minimum binding

Binding for the nulls
Replace a bot in a AI-team with your own one

Create a new AI-Team
Write you own AI
Trouble Shooting

Tools

 Introduction
Creating and driving you own bot is a real pleasure. But once, you may want to fight against your bot or you would like to
enter a championship, you need to AIed your bot. AIing is the process of adding the information to allow the computer to drive
your bot. But the job does not stop here, you must also delivers your bot in an existing team (and replace a previous bot) or
create your own AI. At last, you may also want to change thoe order of the Aied team so you should be able to meet them in
event or, one step to heaven, you would like to create your own strange AI.

This document shows :

• AI Chart : describe briefly the common AI
• Building your bot : some requirements must be fulfilled when building your bots
• Binding : describe the way you attach an AI to a bot
• Replace a bot in a AI-team with your own : all is in the title !
• Create a new AI team: if you do not want to overwrite an existing AI, this will shows you how to add AI-teams
• Write you own AI : Try this to become a guru.
• Troubleshooting : Because it may happen, it will happen
• Tools : make life easer

The common steps to AI a bot are those :
• Create a bot in the lab
• Export your bot with a bot name like bot0, bot1 … bot5
• Move your bot (from RA2/robot design) to your target team (you may have create your own team before, or saved a

bot in an existing AI team before replacing it)
• Modify the file AI/bindings.py to add your new bot binding
• Launch RA2
• Debug
• Launch RA2
• Debug
• Launch RA2
• Debug again
• It works ? No : go 1 step above / Yes : go to sleep, you’re tired.

Before playing the sorcerer, make an archive of your RA2 directory (winzip or winrar your RA2 directory). Sure, you will find
trouble and sometime, you may not know how to recover from them. You will be glad to restore everything from your archive.
The more you add Aied-bot or try against-nature experiment, the more often you will need to archive your directory from a
stable state.

AI-Chart-2.3.doc 2009/06 – GameTechMods-Robot Arena

 AI Chart
All information are case sensitive. For instance, in a computer view, the word ‘Spin’ does not equal the word ‘spin’
Name of controller start always by uppercase character.
Name of smartzone is always lowercase .

AI.py AI .py file SmartZone
names

Weapon Control (trigger) names ‘Srimech’

Chopper/Hammer bot

Chopper.py weapon Fire (button) (Automatically uses main
weapon[s].)

Description: For Chopping or Hammerring type bots (like DEADBEAT) : Engage than Fire
Bindings Info/Example(s):

Poker bot

Poker.py weapon Fire (button) (Automatically uses main
weapon[s].)

Description: For poking/jabbing type bots (like ALARM)

Bindings Info/Example(s): list.append(("FireStorm","Poker",{'nose':math.pi,'radius':0.1,'topspeed':100,'throttle':130,'turn':60,'turnspeed':2.5,'weapons':(19,)}))

Flipper bot

Flipper.py flip Flip (button) (Automatically uses main
weapon[s].)

AI-Chart-2.3.doc 2009/06 – GameTechMods-Robot Arena
Description: For lifting/flipping bots (like EMERGENCY), fire weapon if not upside-down.
Personnal advice : Poker works as well or better for this kind of bot.

Bindings Info/Example(s):
list.append(("iNsAnItY","Flipper",{'nose':math.pi*2,'range':99,'radius':0.1,'topspeed':100,'throttle':130,'turn':60,'turnspeed':2.5,'weapons':(5,)}))

Popup bot ????????? Popup.py weapon Fire (button) ‘Srimech’

Description: For popup wedges that only want to fire their weapons when they can hit the chassis. Components will not trigger the weapon.

Bindings Info/Example(s): ?????????

Omni bot

Omni.py weapon Fire, Spin (buttons) ‘Srimech’

Description: Very good all around AI.py, for most kinds of bots. Can have a spinning weapon plus a firing weapon.

Bindings Info/Example(s): list.append(("Behemoth","Omni",{'nose':math.pi,'radius':0.1,'topspeed':100,'throttle':130,'turn':60,'turnspeed':2.5,'weapons':(6,23)}))

OmniRam bot OmniRam.py weapon Fire, Spin (buttons) ‘Srimech’

Description: Omni bot that will back up and ram repeatedly instead of constantly pushing. For rammer/hammer/spinner hybrids and such.

Bindings Info/Example(s):

OmniSpin bot OmniSpin.py weapon Fire , Spin (buttons) ‘Srimech’

Description: Omni bot that will stop moving when it delivers a big hit, allowing its spinner more time to spin back up. For primarily spinners with srimechs or other
weapons.

Bindings Info/Example(s):

InvertOmni bot InvertOmni.py weapon Fire , Spin (buttons) ‘Srimech’

Description: Same as Omni, but will become invertible once components designated as a srimech break/fail. For bots that are invertible, but fight better when right-
side up.

Bindings Info/Example(s):

Whipper bot

Whipper.py

WhipperPlus

whipzone N/A

Description: Will quickly turn either back and forth (default value) or continuously around (whip parameter = ‘around’) if bot triggers the smart zone. For sit-and-
spinners.
WhipperPlus : much like whipper but try to avoid immobility problems

Bindings Info/Example(s):
list.append(("SlapHappy","Whipper",{'invertible':True,'nose':math.pi,'whip':"around",'radius':0.1,'topspeed':100,'throttle':130,'turn':60,'turnspeed':2.5,'weapons':(9,10)}))

Frenzy bot
(above w/ Hammer strategy)

Frenzy.py whipzone Hammer (analog)

AI-Chart-2.3.doc 2009/06 – GameTechMods-Robot Arena

Description: - Rotates a weapon (intended for spin motor-powered hammers) back and forth as long as a bot is in the smart zone.

Bindings Info/Example(s):
 list.append(("frenZy","Frenzy",{'nose':math.pi/2,'radius':0.1,'topspeed':100,'throttle':130,'turn':60,'turnspeed':2.5,'weapons':(26,)}))

Spinning bot

Spinner.py

DirectionnalSpinner
.py

N/A Spin (button)

Description: Spins weapon continuously and stops on a big hit to allow spin-up time. Options for full-body spinners or forward-oriented spinners.

Bindings Info/Example(s):
 list.append(("Steel Meatball","Spinner",{'range':99,'radius':0.1,'topspeed':100,'throttle':130,'turn':60,'turnspeed':2.5,'weapons':(11,)}))

VertSpinner bot

VertSpinner.py N/A
weapon

Spin (analog)
Fire (button)

‘Srimech’

Description: Spins its weapon in reverse to self-right. Also becomes invertible when its secondary weapons break. For vertical spinners that can self-right by
reversing their weapon and/or firing a srimech.

Bindings Info/Example(s):
 list.append(("Layziee","VertSpinner",{'radius':1,'topspeed':100,'throttle':130,'turn':100,'turnspeed':3.5,'range':99,'weapons':(19,),'sweapons':(19,)}))

Bee bot

Bee.py whipzone Spin (button)

Description: Whipper AI (see above) that allows to have a spin motor

Bindings Info/Example(s):

Bee CC bot BeeCC.py whipzone N/A

Description:

Bindings Info/Example(s):

Pillar bot Pillar.py
PillarPlus.bot

N/A Spin (button)

AI-Chart-2.3.doc 2009/06 – GameTechMods-Robot Arena

Description: - Sits-and-spins in just one direction once opponent is in specified range, and doesn't stop unless immobile counter begins. For sit-and-spinners that
only spin one direction.

Bindings Info/Example(s):

Pusher bot

Pusher.py N/A N/A

Description: A ramming AI that only backs up for another charge when it is at a nearly complete stop. For slow rammers or bots that rely more on pushing than
ramming.

Bindings Info/Example(s): list.append(("Devil II","Pusher",{'nose':math.pi*2,'radius':0.1,'range':99,'topspeed':100,'throttle':130,'turn':60,'turnspeed':2}))

PusherPlus bot PusherPlus.py N/A N/A ‘Srimech’

Description: Pusher + Srimech command

Bindings Info/Example(s):

Ram bot

Rammer.py N/A N/A

Description: A ramming AI that backs up for another ram once it is moving slowly.

Bindings Info/Example(s):
 list.append(("Killdozer","Rammer",{'invertible':True,'nose':math.pi,'radius':0.1,'topspeed':100,'throttle':130,'turn':60,'turnspeed':2.5,'weapons':(10,)}))

AI-Chart-2.3.doc 2009/06 – GameTechMods-Robot Arena
Other bot
(LittleMetalFriend)
(pushes+grabs)

Other.py squeeze Spin (button)
Lefthook (analog)
Righthook (analog)

‘Srimech’

Description: pushes+grabs

Bindings Info/Example(s): list.append(("MyBot"," LittleMetalFriend ",{'weapons':(10,)}))

Smashbox

Smashbox.py weapon Fire (button)
Spin (button)

‘Srimech’

Description: Spin than fire with slight delay if bot in range. Distinguish spin weapon (sweapon) , trgigger (tweapon) and ? (qweapon) in its parameter. This distinction
is coded in a way that the AI will never react as if it loose all its weapon.

Bindings Info/Example(s):
list.append(("Smashbox","Smashbox",{'nose':math.pi,'radius':1,'reload':8,'topspeed':18,'throttle':130,'turn':60,'turnspeed':2.5,'weapons':(20,),'sweapons':(21,),'tweapon
s':(22,),'qweapons':(23,)}))

TerraTurtle

TerraTurtle.py weapon Fire (button)
Spin (button)

‘Srimech’

Description: much like OmniRam strategy : Ram and spin

Bindings Info/Example(s):
list.append(("Smoker","Terraturtle",{'nose':math.pi*2,'invertible':True,'range':50,'radius':1.6,'topspeed':100,'throttle':130,'turn':100,'turnspeed':2,'weapons':(9,10,11,12,1
3,14,15,16)}))

Flyer bot Flyer.py weapon Fire (button) ‘Srimech’

Description: omni that define a proximity parameter (like ranger) and a trigger named ‘trigger 2’ with default value of ‘Srimech’ that is activated when an enemy is
getting close. ‘Trigger2’ is assumed to make the bot fly.

Bindings Info/Example(s):

Topknot bot Topknot.py Zone1: whipzone
Zone2: AxeF
Zone3: AxeB
Zone4: AxeL
Zone5: AxeR
Zone6: under (fires all)

N/A
FireF
FireB
FireL
FireR (buttons)

‘Srimech’

Description: Versatile AI with four independent weapons and whipper function, used for excessively complex designs.

Simple Weapon bot
(fires weapon every 5 sec.)

SimpleWeapon.py N/A N/A

SwitchWep bot SwitchWep.py Zone1: PrimaryWep
Zone2: SecondaryWep
Zone3: OtherWep
Zone4: OtherWep2

PrimaryWep
SecondaryWep
OtherWep
OtherWep2 (buttons)

‘Srimech’

AI-Chart-2.3.doc 2009/06 – GameTechMods-Robot Arena

Description: Once a primary weapon breaks, it will stop firing and a secondary weapon will fire instead. Also has 2 additional independent weapons. For bots that
have a sort of emergency backup weapon that interferes with the primary weapon.

Bindings Info/Example(s):

InvertSwitchWep bot InvertSwitchWep.py Zone1: PrimaryWep
Zone2: SecondaryWep
Zone3: OtherWep
Zone4: OtherWep2

PrimaryWep
SecondaryWep
OtherWep
OtherWep2 (buttons)

‘Srimech’

Description: Same as SwitchWep, but becomes invertible once components designated as a srimech breaks. For SwitchWep bots that are invertible, but fight better
right-side up.

Bindings Info/Example(s):

FBS_

FBS_2.py "Ahead "
LeftRight
Spin

Description: Sit and Spin, better than Whipper
'PreSpinEntrance' : 0
This decides how much, if any, your bot will initially enter (go forward) toward the center of the arena, before spinning up.
Use this to initially clear walls, or even to ram your opponent).
Parameters here are '0' = none (spin immediately in place.); to '1-30' (move toward enemy 'x' amount, then spin).
(Note: If your FBS has trouble staying straight during the 'PreSpinEntrance' , lower the 'turn':xx and 'turnspeed':x.x by 20%. If not fixed, repeat until
corrected. This will NOT affect 'Spin' speed.)
'SpinDirection(1/-1)' : 1
1 is clockwise, -1 is counterclockwise.
'ReMobilizeRoutineTime(10-60)' : 20
This designates how long the bot will try to go 'forward' and then 'backward' to get out of immobilization. 10 is short time, 60 is longer. Adjust for each
bot's needs (weight, motors, wheels...).
Parameters here are between 10-60.

Bindings Info/Example(s):
list.append(("Bot-1","FBS_1",{ 'PreSpinEntrance':0, 'SpinDirection(1/-1)':1, 'ReMobilizeRoutineTime(10-60)':10, 'range':99, 'radius':0.1, 'topspeed':120, 'throttle':120,
'turn':30, 'turnspeed':1.5, 'weapons':(11,)}))

*** Exotic Ai ****

AI.py AI .py file SmartZone
names

Weapon Control (trigger) names ‘Srimech’

SOW (servormotor) D_SMFE_Turret_Ma
chinegun_Spin.py

zone1,zone…zone8
whipzone
zone
also get ‘regroupement zone’
see AI.

Fire1, Fire2…Fire8
Fire

Description: made to drive a tank-like bot, this AI may be used to drive any SOW bot. ID of servo motor must be given as a binding parameter. Servo motor aiming
is calculated and not dependant of any smartzone.

Bindings Info/Example(s):

AI-Chart-2.3.doc 2009/06 – GameTechMods-Robot Arena

SOW (servomotor)

Top_Smasher_2R.p
y

zone1,zone…zone8
whipzone
zone
also get ‘regroupement zone’
see AI.

Fire1, Fire2…Fire8
Fire

Description: one of the best SOW AI. . ID of servo motor must be given as a binding parameter. Brings the bot ‘Skinhead_HW_4c to the podium in Gumba
challenge’. . Servo motor aiming is calculated and not dependant of any smartzone.

Bindings Info/Example(s):

 list.append((" SkinHead_HW_4c","Top_Smasher_2R",{'radius':0.1, 'topspeed':130, 'throttle':130, 'turn':60,'turnspeed':1.2, 'TimerSpeed3thru4':5,
'TimerSpeed5thru8':5, 'TimerSpeed1thru7':5, 'SRM_TImer':1,'TS_range': 3, 'motor':1, 'weapons':(10,11)}))

SOW (servomotor)

LaserGuidedV3.py

(V4 should come)

 Servo
Spin
Fire

Description: much like Top_Smasher_2R but the ID of the motor is calculated and not given in parameters -> constraint : just one servo motor in your bot.

Bindings Info/Example(s):
 list.append(("TazbotLG","LaserGuidedV3",{ 'nose':math.pi,'range':80, 'radius':3, 'servorange':2,'servonose':-1,'delta':0.15, 'servospeed':60, 'topspeed':99,
'mayFire':True, 'throttle':130,'weapons':(1,2,3,4,5,6,7,8,9)}))

In My
Arms

InMyArms2.py servozone Servo
Spin
Fire

Description: Open arms when enemy is far, close them when enemy in smart zone, many parameters : open angle, close angle, frequency to check if need to
open/close arms/etc. see AI for more details.

Bindings Info/Example(s): list.append(("testBotX", "InMyArms2", { 'nose': math.pi, 'servonose':1, 'servoopenangle':2.9, 'servocloseangle':0.5,
'servodelta':0.15, 'servospeed':100, 'range' : 99,'weapons': (1,2,3,4) }))

Change frontal weapon from
time to time

ShiftWeapon3.py servozone Servo
Spin
Fire

AI-Chart-2.3.doc 2009/06 – GameTechMods-Robot Arena

Description: weapons are mounted on a servo motor that switch angle from time to time,

Bindings Info/Example(s):

 list.append(("shiftweapon II", "ShiftWeapon3", { 'nose': math.pi, 'servospeed':30,'servodelta':0.05, 'servoTimer':35, 'servoNbPos':4,'weapons': (1,2,3,4) }))

Feel better whene inverted

OmniInverted.py weapon Fire
Spin

Srimech

Description: when not, try to become inverted

Bindings Info/Example(s):

 list.append(("testInverter", "OmniInverted", { 'invertible': True, 'nose': math.pi, 'weapons': (8, 12, 14, 15) }))

(SOW) Omni with servo
mounted weapond

omniservo.py
SpinServo.py

zoneservo1
zoneservo2

Servo
Fire
Spin

Description: weapon change position depending on which smartzone foe enter. Less effective than SOW AI that does not rely on smartzone.

Bindings Info/Example(s):

Omni that allows multi zone
much like topknot

omnimultizone.py weapon
weapon1
weapon2
weapon3
waepon4

Fire
Fire1
Fire2
Fire3
Fire4

Srimech

Description: much like omni but multi zone allowed. Also authorized : selection of the tactic as a parameter.

Bindings Info/Example(s):

Poker with no smart zone

Omni where firing weapon
does not rely on smartzone

RangePoker.py

RangeOmni.py

Description: Poker that does not need smartzone but that relies on its nose direction and range to fire weapon

Bindings Info/Example(s):

Try to flank than charge Plow.py

AI-Chart-2.3.doc 2009/06 – GameTechMods-Robot Arena

Description:

Bindings Info/Example(s):

FOR EVEN MORE CRAZY AI (Flying bots, etc) see the Madiaba showcase on gametechmods.

NOTE: ‘Srimech’ is for triggering the up-righting mechanism(s) in an inverted bot: (Self righting mechanism).

Most useful AI : Spinner, Rammer, Whipper; Omni and Poker.

AI-Chart-2.3.doc 2009/06 – GameTechMods-Robot Arena

 BUILDING YOUR BOT

While you build your bot, you must fulfilled some
requirements about the name of the controller.

Driving controllers : They must be Analog controller and
names Forward and LeftRight (case sensitive) :

Firing controller : they must be button. Most of the time they are
called ‘Fire’.
See AI Chart above for special name consideration. Srimech
controllers work like Fire controllers but their name.

Spin controller. They must be button (some exemption as shown
on the AI chart above). Most of the time they are called “Spin”.

At last : Firing mechanism are activated when enemy enter
special zones names as ‘Custom Zone’. You must define
theses. Most of the time they are called ‘weapon’ (and not
Weapon). Whipper called them ‘whipzone’. See AI chart
above for special name requirements.
Here are sample placements. A same bot may have many
custom zones with the same name.

AI-Chart-2.3.doc 2009/06 – GameTechMods-Robot Arena

 BINDING:

All these information are case sensitive. Error in typing leads to RA2 crash !

 binding format: ('name of robot from .bot file', 'name of AI.py from script class', {'optional constructor parameter':value,
'another':value})

 constructor parameters:

nose is "front" of bot- default value is 0
(equals to 2 * math.pi).

angles go from –math.pi through 0 to math.pi

 typical nose values may be : ‘nose’:math.pi,
‘nose’: - math.pi / 2, ‘nose’:math.pi/2

you know your nose direction by looking at
the profile of your bot :

All about nose :

nose is "front" of bot-
Nose paradigm: All 360 rotational degrees for "math.pi" are represented by the factor '2'.
thus: '2'=360degrees, '1'=180degrees, '0.5'=90degrees, '0.25'=45degrees.

#The direction of change(CW/CCW)is determined by the "-" or "+" before the statement.
#thus: '+' causes rotation CCW, '-' causes rotation CW.

#Format examples:
 # " 'nose':math.pi*0.25 " will rotate the bot 45degrees/CCW.
 # " 'nose':-math.pi*0.25 " will rotate the bot 45degrees/CW.
 # " 'nose':math.pi*0.5 " will rotate the bot 90degrees/CCW.
 # " 'nose':-math.pi*0.5 " will rotate the bot 90degrees/CW.
 # " 'nose':math.pi*0.75 " will rotate the bot 135degrees/CCW.
 # " 'nose':-math.pi*0.75 " will rotate the bot 135degrees/CW.
 # " 'nose': -math.pi " and math.pi rotate the bot 180 degrees.

(Make sure there is a comma(,)after the the value # (to separate it from the next characteristic and its value).
(-----notes-----)

Note1: "math.pi" AND 'nose':math.pi*1.0 " AND " 'nose': -math.pi*1.0 " will rotate the bot 180 degrees.
 (The first two are the same, and the last two just rotate different directions to get 180 degrees.}
 Thus there is no real reason to have a factor greater than '1',
 since after that you just move into the other half of the circle covered by the other '+' or '-' sign.
 Note2: "math.pi*0" or "math.pi*2" = the same as no new heading.

AI-Chart-2.3.doc 2009/06 – GameTechMods-Robot Arena
invertible - can function upside-down (default False). Once inverted, an invertible bot will try to move to the nearest enemy. Once
inverted, a non-invertible bot will try to use its Srimech to go up right. Moreover, some AI will tell a bot not to fight an inverted enemy
bot waiting for the countdown to start.

 Typical invertible Value may be : ‘invertible’: True

topspeed - speed in meters/second AI will attempt not to exceed (default 4.0).

throttle - maximum analog value AI will attempt not to exceed (default 100)

turnspeed - turning in radians/second AI will attempt not to exceed (default 2.5)

turn - maximum analog value AI will attempt not to exceed (default 60)

radius - bot radius to used to check distances to hazards, walls, and other bots. (default 1.0). With a high value, your bot will avoid
hazards, with a null value, it will ignore them (but hazards will not ignore your bot !). Low value may be useful for high speed bots like
pusher or rammer that rely more on their speed than maneuver.

weapon – Id of the weapon. Once all the components with theses Id are broken, the strategy of the bot may change to pusher.

Easy usage : put a number for each weapon you have. Sample : ,'weapons':(1,2,3,4,5,6)

AI-Chart-2.3.doc 2009/06 – GameTechMods-Robot Arena

Adding binding

The file AI/bindings.py contains all the bindings of all the bots. You need to add your line to this file.

This is a python file which is in fact a program. So you not only need to describe your binding, but you must also need to write Python
code to tell the machine to keep your binding. This is easy ; just include you binding in the code below :

 list.append(your binding)

- Warning : the line containing ‘list append’ must start with exactly 4 blank space (no tabulation).
- Advice : because bindings.py is a program, each line had a specific role. So, when you add your binding, do it after an existing

binding line. It will help you to be sure that indentation is correct
- Advice : most of the time the file bindings.py groups the Ai definition by team, so add your line in the good group.
- Pretty : in this file, lines strating with # are comments. You may add your own.

Sample Bindings.py

import math

def load(list):
 print "Loading AI bindings"

 # binding format:
 # ('name of robot from .bot file', 'name of AI from script class',
 # {'optional constructor parameter':value, 'another':value})

 # constructor parameters:
 # nose - "front" of bot in radians (default 0)
 # invertible - can function upside-down (default False)
 # topspeed - speed in meters/second AI will attempt not to exceed (default 4.0)
 # throttle - maximum analog value AI will attempt not to exceed (default 100)
 # turnspeed - turning in radians/second AI will attempt not to exceed (default 2.5)
 # turn - maximum analog value AI will attempt not to exceed (default 60)
 # radius - bot radius to use for checking for hazards and walls (default 1.0)

 #team0
 list.append(("Steel Meatball","Spinner",{'range':99,'radius':0.1,'topspeed':100,'throttle':130,'turn':60,'turnspeed':2.5,'weapons':(11,)}))
 list.append(("T O R Q U E","Spinner",{'range':99,'radius':0.1,'topspeed':100,'throttle':130,'turn':60,'turnspeed':2.5,'weapons':(11,)}))
 list.append(("Facemelikeaman","Omni",{'invertible':True,'range':99,'radius':0.1,'topspeed':100,'throttle':130,'turn':60,'turnspeed':2.5,'weapons':(11,)}))
 list.append(("Hazardous Contraption","Omni",{'nose':math.pi,'radius':0.5,'range':50,'topspeed':100,'turn':50,'turnspeed':3,'weapons':(13,14,15,16,17,18,19,20)}))
 #team1
 list.append(("AW-Terminus","Spinner",{'nose':math.pi*2,'range':30,'radius':0.4,'topspeed':100,'throttle':130,'turn':60,'turnspeed':2.5,'weapons':(6,9,10,11,12)}))
 list.append(("Gammaraze III","Omni",{'invertible':True,'nose':math.pi*2,'radius':0.1,'range':500,'topspeed':100,'throttle':130,'turn':60,'turnspeed':2.5,'weapons':(12,20,22,36,37,40)}))

 # 39 - Arthrobotics
 list.append(("Wedge of Doom","Poker",{'nose':math.pi,'radius':0.1,'topspeed':100,'throttle':130,'turn':60,'turnspeed':2.5,'weapons':(16,)}))
 list.append(("BW-Peer Pressure","Flipper",{'nose':math.pi*2,'range':99,'radius':0.1,'topspeed':100,'throttle':130,'turn':60,'turnspeed':4.5,'weapons':(10,)}))
 list.append(("Triclops v2.0","Omni",{'nose':math.pi*2,'radius':0.1,'topspeed':100,'throttle':130,'turn':130,'turnspeed':2.5,'weapons':(23,24,25)}))
 #team2
 list.append(("Hum-Drums","Omni",{'invertible':True,'nose':math.pi,'range':99,'radius':0.1,'topspeed':100,'throttle':130, 'turn':50, 'turnspeed':1.5, 'weapons':(11,)}))
 list.append(("Mako 4","Omni",{'range':99,'radius':0.1,'topspeed':100,'throttle':130,'turn':60,'turnspeed':2.5,'weapons':(11,)}))
 list.append(("Morse Code Breaker","Omni",{'nose':math.pi,'range':99,'radius':0.1,'topspeed':100,'throttle':130,'turn':60,'turnspeed':2.5,'weapons':(11,)}))
 list.append(("Mutant Dragonfly III","Omni",{'invertible':True,'nose':math.pi,'range':99,'radius':0.1,'topspeed':100,'throttle':130,'turn':60,'turnspeed':2.5,'weapons':(11,)}))
 list.append(("obZen","Omni",{'invertible':False,'nose':math.pi,'range':99,'radius':0.1,'topspeed':100,'throttle':130,'turn':60,'turnspeed':2.5,'weapons':(11,)}))

Minimum binding

The minimum information are : the name of the bot, its AI, it’s weapon. So a line like the one above is correct :
list.append(("Steel Meatball","Spinner",{'weapons':(11,)}))

Binding for the nulls

Try this, it should work, as long as you build correctly your bot :
list.append(("You Bot Name Here","Omni",{'weapons':(1)}))

AI-Chart-2.3.doc 2009/06 – GameTechMods-Robot Arena
Otherwise try :
list.append(("You Bot Name Here","Omni",{‘nose’:math.pi, 'weapons':(1)}))

 Replace a bot in a AI-team with your own one (from gametechmods forum)
Here are the easy step to replace a bot in a team :

1/ memorize which bot in which team you would like to change :

2/ Create your killer bot. Give it a name, be aware of its nose attitude :

3/ export your bot : For name give it bot0 through bot5 depending of the bot you would like to change in your target team

AI-Chart-2.3.doc 2009/06 – GameTechMods-Robot Arena
4/ exit RA2. under your AI directory, select your team and save the bot that you will erase :

5/ move the bot you have create from RA2/Robot designs to AI/target team. The system should ask you if you really want to
erase the bot with the same name (you will) :

6/ add your bindings in AI/bindings.py. It is not necessary to delete the previsous line :

7/ launch RA2, enjoy life and drink ... whatever you want :

AI-Chart-2.3.doc 2009/06 – GameTechMods-Robot Arena

 Create a new AI-Team
This time, you do not want to erase an existing bot in a team, but you would like to create you own one.
Steps overview :
1/ create your bots, export them as bot0,bot1, bot2, … to bot 5. (a team should have only one bot).
2/ create a directory named TeamXXX under RA2/AI
3/ add your bindings in RA2/bindings.py
4/ copy your bots from robot design to you own team directory (aka TeamXXX)
5/ modify the file AI/teams.txt to declare your own team.

In this section, we only focus on steps 2 and 5.

Step 2 : create a directory named teamXXX
Under your RA2/AI directory notice the max number of team, create a new directory with name ‘teamXXX’ with XXX the
max number + 1 :

Step 5 : modify the file AI/teams.txt
The file AI/teams.txt describes for each AIed team, its name, motto, number of bots and its icone.
Other lines describe their state in tourney. Do not bother about them.
What you have to do is to add a set of lines at the end of teams.txt. This set is like this (green words have to be changed with
your values) :
index XXX the max number of team
The name of your team
Its motto
AI /name of the icone you have previously place under RA2/AI
Robots: 0 1 2 3 4 5 (which means you have 6 bots, it should have been 0 1 4 if you have only defined bot0,bot1 and bot4)
Robot In Event: -1
0
16
16
0
0
0
0
0
100000

AI-Chart-2.3.doc 2009/06 – GameTechMods-Robot Arena
true
0
false
0
-1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0
0
0
Thus, for our new team, the last lines of the file AI/teams.txt may be (added lines in green) :
…
index 21
21 Team BBeans Champions
"winners"
AI\bbeans.bmp
Robots: 0 1 2 3 4 5
Robot In Event: -1
0
16
16
0
0
0
0
0
100000
true
0
false
0
-1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0
0
0
index 22
22 Orcish Power
Nothing but rust and dust
AI/orc.bmp
Robots: 0 1 2 3 4 5
Robot In Event: -1
0
16
16
0
0
0
0
0
100000
true
0
false
0
-1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0
0
0

AI-Chart-2.3.doc 2009/06 – GameTechMods-Robot Arena

 Write you own AI

few words about inheritance and overall view
RA2 give a generic AI called SuperAI coded in RA2/AI/_init_.py. This AI defines many functions. This AI is specialized in
named AI like Rammer, Pusher, Spinner etc which inherit from SuperAI. This means that each specialized AI only have to
specify its particularity from the generic AI.
While writing a new AI, you just declare the original part of your specialized AI. However, a few constraint must be fulfilled :
you must at least declare the name of your new AI, the way to initialized it, and record it in the list of available AI.

As usual, indentation and case sensitive constraints must fulfilled.

The skeleton of a AI script must be like that :
from __future__ import generators
import plus
import AI
from AI import vector3
import Arenas
import Gooey
import math
import Tactics

class MyAIName(AI.SuperAI):
 "MyAIName description"
 name = "MyAIName"

… list of functions …

AI.register(MyAIName)
The name of the file must not necessary be the same as the name of the AI but we truly recommend that good practice.

Understanding the main functions of specialized AI.
Here, we present the main function of a AI, their role and what you should use them for. If you do not overwrite them, you will
add the standard comportment of SuperAI.

Function name Role What to do with remarks
def __init__(self, **args) Initialize the AI, its attribute

Declare the primary tactics

Parse parameters from bindings.py

Declare specific attributes

Must always contains the line
AI.SuperAI.__init__(self, **args)
Which initialize the generic
information of the AI.

def Activate(self, active): Once All the bots in an event have
been built, this script is called after
the count down.
If the attribute ‘activate’ is true,
you know that all the components
of the bot have been created

At the time this function is called,
the screen with the arena is
displayed, so information about
debugging text zone are also
defined here.

Register your smart zone

Do work that deal with component
ID (ie parse the components to
retrieve the Id of a specific one).

Must always call the SuperAI :
return AI.SuperAI.Activate(self,
active)

def Tick(self): This function is called 8 time each
second.

Short time consuming job, for
instance :

Must always end with
return AI.SuperAI.Tick(self)

AI-Chart-2.3.doc 2009/06 – GameTechMods-Robot Arena
Calculate enemy range and activate
controllers

def InvertHandler(self): Function called when the bot is
inverted

Call Srimech or other self –upright
mechanism of your own

def LostComponent(self, id): Function called when a component
is lost : usually remove the
component Id from the list called
‘weapons’ in the bindings.py .
Once this list is empty, change the
default tactic to ‘Pusher’

ID : once you lost some weapon,
you may require your bot to act like
a whipper, a pusher, activate
secondary weapon, etc.

Unless you correctly filled the
‘Weapons’ parameter with real ID
of weapon component, your list
will never be empty and this
function usually does nothing.

def DebugString(self, id, string): Write information on the screen debug To activate the debug information
while the bot is activated, you must
declare thoses lines in your _init_
function :
 self.debug = True
 AI.SuperAI.debugging = True

def SmartZoneEvent(self, direction,
id, robot, chassis):

Function called when a bot enter in
one of your custom zone

Depending of which smartzone is
activated, usually trigger a weapon

Smartzone must have been record
in the activate function.

Init
In the _init_ function you declare all the variable you will use further. Default declaration may be seen in the AI/_init_.py
script.
Before all, call the standard initializations of SuperAI. If you do it later, it may overwrite the job you’ve done.
Typical initialization are :

• Name of controllers
• Name of customZones
• (at last) default tactic

Initialization may be done by defining constant :
 #declare the name of the custom zone :
self.zone = "weapon"

It may be also done by parsing the parameters in the bindings.py
#read the value of the ‘range’ parameter if defined :
if 'range' in args:
 self.spin_range = args.get('range')

Tactics are behaviors that are activated when particular events or context appears. the SuperAI define standards values :
 self.tactics.append(Tactics.Invert(self, self.InvertHandler()))
 self.tactics.append(Tactics.Unstuck(self, self.StuckHandler()))

 if plus.getGameType() == "TABLETOP":
 self.tactics.append(Tactics.AvoidEdges(self))
 self.tactics.append(Tactics.PushOffEdge(self))
 elif plus.getGameType() == "KING OF THE HILL":
 self.tactics.append(Tactics.Dethrone(self))
 self.tactics.append(Tactics.Reign(self))

Default tactics are defined by adding them in a ‘private list’ : You may add more than one tactic. The system will choose for
you which one is the best to apply… but its choice should not have been yours, better not add to much tactics.
add default tactic : engage
 self.tactics.append(Tactics.Engage(self))

For something else than pusher or rammer, select the Engage tactics.
Below an array of known tactics :

Name
Dumbcharge

AI-Chart-2.3.doc 2009/06 – GameTechMods-Robot Arena
Charge
Shove
Engage
Reorient
Invert
Unstuck
AvoidEdges
PushOffEdge
Dethrone
Reign

Creating new tactics may be done in the file tactics.py. It’s a hard work I do not investigate yet, so I won’t talk much about.
Typically a tactic contains 3 functions : the _init_ to initialize it, the evaluate to know between 2 tactics which on is the best to
do and the execute which is the tactic by itself.

Activate your Bot
Once your bot have been build, the arena displayed on the screen, you may do additional job on the activate function.
At least, if you’ve got some, register your custom zone here, and call the SuperAI Activate function. :
 def Activate(self, active):
 if active:
 self.RegisterSmartZone(self.zone, 1)
 return AI.SuperAI.Activate(self, active)

We talk about custom zone, later in this document.

Deal with controllers
There are two kind of controllers : analog and button.

Controller type Command Effect

self.Input(controllerName, 0, 1) Fire or turn clock
self.Input(controllerName, 0, 0) Stop it

Button (used for
piston and spin
motor) self.Input(controllerName, 0, -1) Fire or turn counterclock

self.Input(controllerName ,0, speed) turn clock, move forward
self.Input(controllerName ,0, 0) Stop it

Analog (used for
driving, servo piston
and motor, special
AI)

self.Input(controllerName, 0, -speed) Turn counter clock, move backward

Speed for analog command may go from 0 to 100

ControllerName Usage
Controller name may be hard-coded :
self.Input(“Spin” , 0, 1)
You may also declare them in the _init_ function then reference them :
 def __init__(self, **args):
 AI.SuperAI.__init__(self, **args)
 self.trigger2 = ["Srimech"]
 # name of srimech controller may be define in bindings.py
 if ‘srimech’ in args: self.triggers2 = args[‘srimech’]
…
 def InvertHandler(self):
 # fire weapon once per second (until we're upright!)
 while 1:
 self.Input(self.trigger2, 0, 1)

 for i in range(0, 8):
 yield 0

AI-Chart-2.3.doc 2009/06 – GameTechMods-Robot Arena

Where to use those commands
Typical usage of controller command are made in thoses function : Tick (),InvertHandler (),WhipAround(),
WhipBackAndForth(), SmartZoneEvent()

Know the current status
You may wonder which is the current status of a controller : here
 is a sample usage :

currentStatus = self.GetInputStatus("Spin", 0)

for a spinner it may be 1,0 or -1

Deal with Custom zones
Custom zone must first be registered in the Activate function. You may hard-code their name or declare them in the _init_
function. Here is an instance of hard coded registration of 2 custom zone associated with the ID and 2 :
 def Activate(self, active):
 if active:
 # standard smart zone :
 self.RegisterSmartZone(“weapon1”, 1)
 self.RegisterSmartZone(“weapon2”, 2)
 return AI.SuperAI.Activate(self, active)

Once an enemy enter your custom zone the SmartZoneEvent() function is called. You know which of your smart zone have is
concerned by looking at the parameter ‘id’.
In the sample below, if enemy in zone 1 -> fire weapon. If enemy in zone 2 -> turn
 def SmartZoneEvent(self, direction, id, robot, chassis):
 if id == 1:
 if robot > 0:
 if direction == 1:
 # Fire weapon 1 :
 self.Input("Fire", 0, 0)
 elif id == 2:
 if robot > 0:
 if direction == 1:
 # turn Bot :
 self.Input(“LeftRight” ,0,100)

 return True

Other functions
To build an AI, you need to overwrite some of the common function describe above. To do this, you have few commands that
helps you to act or make good choice. Here is a short array of those command.
Command Role Sample usage or file where you may found a useful

sample
self.GetNearestEnemy() Return the Id of the enemy and

its range
Omni.py : def Tick()

self.GetNumComponents() Give the number of components
self.GetComponentType(i) Give the kind of component is

the one with Id i

Here is a sample code to add in the Activate Function :
it build a ‘weapon list’ with only the Id of weapons :
 def Activate(self, active):
 if active:
 goon = 1
 i = 0
 self.weapons = []

AI-Chart-2.3.doc 2009/06 – GameTechMods-Robot Arena
 while goon == 1:
 if i == self.GetNumComponents(): break
 currentType = self.GetComponentType(i)
 if currentType == "Weapon": self.weapons.append (i)
 i = i+ 1
 return AI.SuperAI.Activate(self, active)

self.GetMotorAngle(Id) Give the current angle of a servo
motor with the given Id

range =
self.GetDistanceToID(robot_id)

Give the distance to a given
robot identified by its Id

GetPath(self, from_world, to_world)

IsStraightPathClear(self, from_world,
to_world)

DriveToLocation(…)

plus.getLocation(IdRobot)

Travel information See Tactics.py for usage of theses function

RobotInRange(Id) Return true if robot in range of
our weapon

See Tactics.py for usage.
Spiner.py re-defines this function : good tutorial

CheckSensors Iterate on custom zone to know
if there is an enemy, call
SmartZoneEvent.

See __init__.py

self.ai.GetSpeed() Get current speed See Tactics.py for usage.
angle = self.ai.GetHeading(False) Get current angle See Tactics.py for usage.
self.ai.GetEnemies() Return an array of enemies Id See Tactics.py for usage.
self.ai.Throttle(100) Go full power
damage =
self.GetLastDamageReceived()

Return an array where :
damage[3] : the robot Id that
hurt us
damage[2] :the time elapsed
damage[1] : amount of damage
damage[0] : Id of Weapon
(information need validation)

Spinner.py

Damage = self.GetLastDamageDone As above but what we’ve done __init__.py
self.GetID() Get Id of our robot
self.GetComponentHealth(i) Give current state of component

of Id i

 enemyHead =
self.GetHeadingToID(enemyId, False)

Return angle toward enemy

self.ai.GetHeading(True) Return current angle
To complete To complete To complete

 Trouble Shooting
• RA2 crashes when launching : problem with AI/teams.txt or syntax in bindings.py (lack of parenthesis, bad

indentation)
• RA2 crashes when starting a fight : component not found / component of bot (coming from outer space pack) have not

been installed / see below ‘Bindings.py commons error. /
• RA2 crashes after count down (3-2-1) in a match : AI is found, but it is not correctly written (case you’ve create your

own)
• Bots don’t move after count down (3-2-1) in a match and than, RA2 crashes : AI is found, is syntaxically correct but

use variable that have not been declared of initialized before (problems of upper/lower case – variable declared in a
block and referenced outside that block).

• Black screen when you switch off your computer or your mother disconnected the electrical outlet with a hoover :

AI-Chart-2.3.doc 2009/06 – GameTechMods-Robot Arena
That’s normal, do not worry, and tell you it should be worst (listen to the song from the toy dolls ‘my girl with a
hoover’).

• Bindings.py common errors :
- case sensitive problems
- indentation is not good
- Spaces in name of a bot
- Parenthesis unmatched
- duplicate bot names in bindings.py : the AI take one of the definition while you try to correct the other one
- unknown AI

 Tools
We encourage the use of the free text editor Notepad++ which gives clever information on python files : with it, you could
quickly find error in your tipping :

